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Research Domain:

• Volume exploration

• Visualizing meaningful information in 
the volumetric data
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Challenge in Volume Exploration:

• Information Challenge

• Completeness Challenge

• Semantic Challenge
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Challenge in Volume Exploration:

• Most research have addressed issues surrounding how to depict 
the data, what to depict remains an important problem

Information Challenge: 
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Challenge in Volume Exploration:

• Most research have addressed issues surrounding how to depict 
the data, what to depict remains an important problem

• Displaying meaningful feature is an important challenge

Information Challenge: 
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Challenge in Volume Exploration:

• Exhaustive data exploration is a tedious and time-intensive exercise

• But still it is important to ensure that we do not overlook any important 
features in the data

• Mechanisms are needed to facilitate a complete data exploration

Completeness Challenge: 
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Challenge in Volume Exploration:

• Exhaustive data exploration is a tedious and time-intensive exercise

• But still it is important to ensure that we do not overlook any important 
features in the data

• Mechanisms are needed to facilitate a complete data exploration

Completeness Challenge: 

• Semantically driven navigation of the data is still a task that is 
designated for the user

Semantic Challenge: 
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Contribution of this paper:

Challenges Contributions to Address

Information
• Extracting informative regions using image 

segmentation on reduced statistics
• Visually segmenting the 2D histograms

Completeness

• By constructing a complete exploration hierarchy
• This hierarchy organizes segments of different sizes 

from coarse to fine
• Assisted by information-theoretic measurement 

(Entropy, Information gain etc.) 

Semantic • Interactive volume exploration interface
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Transfer Function Design:

• Transfer functions directly influence the visualization by assigning 
optical properties such as color and opacity to voxels.

• Finding a good transfer function is critical to producing art informative 
rendering
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Transfer Function Design:

• Histogram Helps Transfer Function Design

[Drebin et al. SIGGRAPH 88]
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Transfer Function Design:

• Histogram Helps Transfer Function Design

• The peaks of the histogram are composed by the distributions of different 
constituents

[Drebin et al. SIGGRAPH 88]
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Transfer Function Design:

• Histogram Helps Transfer Function Design

• The peaks of the histogram are composed by the distributions of different 
constituents

• By assigning different colors and opacities to these components. we can visualize 
different materials

[Drebin et al. SIGGRAPH 88]
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Transfer Function Design:

Example:
- following the peak in the histogram to obtain visualization 
of the cadaver head dataset
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Transfer Function Design:

However, the separation of the distributions may not be always clear
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Transfer Function Design:

In this case, we have to exhaustively explore the dataset by modifying the 
transfer function 
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Transfer Function Design:

In this case, we have to exhaustively explore the dataset by modifying the 
transfer function 
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Transfer Function Design:

In this case, we have to exhaustively explore the dataset by modifying the 
transfer function 
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Transfer Function Design:

The meaningful feature can be located arbitrarily
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• To assist the search for meaningful and salient features, the transfer 
function has been extended to multiple dimension.

• Firstly introduced by Levoy

• Example: 2D-

o A histogram in 2D with the intensity on the x axis, gradient on the y 
axis, the darkness of the shade represents the frequency 
(intensity-gradient histogram)

o The gradient f’(x) helps capturing material boundaries.

2D Transfer Function
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2D Transfer Function

o Shapes on the 2D intensity-gradient histogram correspond to 
meaningful volumetric segments.

o This has been implemented in popular visualization packages such 
as Voreen, ImageVis3d and VisIt
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Related works on TF

1. Kindlmann et al.:

✓ Uses higher derivatives: f”(x) 

✓ Each bin in histogram volume represents the combination of 
values of three variables f, f‘ and f“.

✓ Value stored in each bin signifies the number of voxels in 
the original volume within that same combination of ranges 
of these three variables.
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Related works on TF

✓ Uses the relative size of features.

✓ Maps the relative size of local 
features in a volume to color and 
opacity

2. Correa et al.:
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Related works on TF

✓ Uses LH Histogram (Serlie et al.) that shows lower and higher 
intensities of materials that form the boundaries

3. Sereda et al.:

✓ Domain specific semantic attributes

4. Salama et al.:

✓ Information divergence 

5. Ruiz et al.:
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Intensity-Gradient histogram

✓ This paper focuses on Intensity-Gradient Histogram

Intensity

G
ra
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t
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Intensity-Gradient histogram

✓ This paper focuses on Intensity-Gradient Histogram

✓ The intensity gradient histogram is very effective because human 
users can extract volume segments by recognizing the arcs and blobs

Intensity

G
ra
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t
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Search for meaningful features

✓ Users draw shapes on histogram to extract meaningful components

User trying to make polygon widget to highlight the feature that corresponds to the top arc 
(ImageVis3D)
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✓ Users draw shapes on histogram to extract meaningful components

✓ Manipulating the widget takes quite some effort

User trying to make polygon widget to highlight the feature that corresponds to the top arc 
(ImageVis3D)

Search for meaningful features
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✓ Users draw shapes on histogram to extract meaningful components

✓ Manipulating the widget takes quite some effort

Search for meaningful features

✓ The challenge here is the 
histogram does not show 
where do the good features 
separate
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✓ Meaningful components do correspond to histogram segments

Volume features and histogram
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✓ Meaningful components do correspond to histogram segments

Ski
n

Volume features and histogram
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✓ Meaningful components do correspond to histogram segments

fles
h

Volume features and histogram
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✓ Meaningful components do correspond to histogram segments

skul
l

Volume features and histogram
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✓ Meaningful components do correspond to histogram segments

sinu
s

Volume features and histogram
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✓ Meaningful components do correspond to histogram segments

teet
h

Volume features and histogram

35



✓ Meaningful components do correspond to histogram segments

✓ Goal of this paper is to show you how to discover these regions in a 
systematic manner.

Goal

36



✓ By recursively segmenting the histogram.

✓ A visual-inspired approach is introduced that fits the histogram with a 
few segments

Reduce search to classification
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✓ Segment the histogram statistics

✓ Build an exhaustive multilevel hierarchy

✓ User interactive exploration 

Overview
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Advantages

✓ Visual segmentation matches user intuition

✓ Augments the intensity-gradient feature space without 
requiring the users to learn any new features

39



• Instead of directly segmenting the volume data, the 
histogram is segmented

• Normalized-cut (ncut) [Shi & Malik PAMI 2000] to find shapes

Segmenting the histogram

Example: normalized cut provides intuitive segments on natural images

[Wang et al. PATTERN RECOGN LETT 06]
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• A graph G = (V, E) partitioned into two disjoint sets A and B-

• By simply removing edges connecting the two parts

• The degree of dissimilarity between these two pieces can be computed as 
total weight of the edges that have been removed.

• In graph theoretic language, it is called the cut:

The ‘Cut’

From: Shi & Malik et al. PAMI 2000
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• The optimal bi-partitioning of a graph is the one that 
minimizes this cut value.

• Although there are an exponential number of such partitions, 
finding the minimum cut of a graph is a well-studied problem 
and there exist efficient algorithms for solving it.

The ‘Cut’ (cont.…)

From: Shi & Malik et al. PAMI 2000
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• It models an image as a graph and finds the best way to partition this 
graph into k components.

• Every pixel in the image is considered as a node on the graph.

• The edge weights, w (u ,v ), between the nodes, u and v, are computed as 
color and location similarities between the pixels.

• The closer the pixels, the stronger the edge weight is.

The ‘Cut’ in image segmentation
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• The normalized cut seeks to disconnect the graph, V, into components 
A, B by removing the edges with the least normalized cost. 

‘Normalized Cut’ in image segmentation
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• The normalized cut seeks to disconnect the graph, V, into components 
A, B by removing the edges with the least normalized cost. 

• The formulation of the normalized cut is as follows:

‘Normalized Cut’ in image segmentation

o cut (A, B) = total weight of edges connecting components A and B
o assoc (A, V) = total connection from nodes in A to all nodes in graph
o assoc (B, V) = (similarly defined)

o Ncut (A, B) normalizes cut (A, B)

[ Shi & Malik et al. PAMI 2000 ]45



‘Normalized Cut’ in image segmentation (cont.…)

Finding the minimum Ncut (A, B) is a NP-complete problem.
This is usually approximated by solving an eigenvalue problem:

where,
W = adjacency matrix of the image graph with edge weights w (u, v)
d(u) = total connection from node u to all other nodes
D = diagonal matrix with entries, d(u)
λ = eigenvalue

We can use the resulting eigenvectors,  y to partition the graph.

[ Shi & Malik et al. PAMI 2000 ]
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‘Normalized Cut’ in image segmentation (cont.…)

Finding the minimum Ncut (A, B) is a NP-complete problem.
This is usually approximated by solving an eigenvalue problem:

o We find the top k eigenvectors to approximate this minimum cut 
for k different segments

o [Yu and Shi et al.] shows how to find k partitions by finding k 
eigenvectors of the eigenvalue problem
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‘Normalized Cut’ in image segmentation (cont.…)

Example : Normalized cut to segment 256 x 256  8 bit histogram images:-

When, k = 2 the tooth is separated from the volume box 
k=10 shows segments of the tooth crown and root
k = 20 shows different material boundaries.  
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Determining the ‘k’

Example : Normalized cut to segment 256 x 256  8 bit histogram images:-

When, k = 2 the tooth is separated from the volume box 
k=10 shows segments of the tooth crown and root
k = 20 shows different material boundaries.  

So how many segments should we choose to compose visualization?
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Iteratively test and pick k is time consuming and yet increasing k may 
not subdivide regions of interest.

Try k = 2, 3, 4, 
… 

Determining the ‘k’
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Iteratively test and pick k is time consuming and yet increasing k may 
not subdivide regions of interest.

For example when k is increased from 4 to 5 , the box is subdivided.  We 
believe users would prefer subdividing the tooth.

Try k = 2, 3, 4, 
… 

Determining the ‘k’
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• Allowing users to select 
the appropriate 
segments instead of 
choosing a specific k

• To accomplish this, a 
hierarchy is built by 
recursively applying the 
normalized cut.

Determining the ‘k’:
Replacing k with User-driven Exploration
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• Allowing users to select 
the appropriate 
segments instead of 
choosing a specific k

• To accomplish this, a 
hierarchy is built by 
recursively applying the 
normalized cut.

Determining the ‘k’:
Replacing k with User-driven Exploration
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• Hierarchy leads the users to traverse the dataset, selectively subdivide 
and inspect segments of their choice

Multilevel Segmentation Hierarchy
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• Any cut along this hierarchy guarantees complete coverage. 

Multilevel Segmentation Hierarchy

[Xia & Varshney Vis 96, Hoppe SIGGRAPH 97, 
Luebke & Erikson SIGGRAPH 97]

View-dependent Level of Detail hierarchies:
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• Example: Assembling the red-framed segments produces the 
visualization on the right

Multilevel Segmentation Hierarchy

tooth, holding 
materials, space

tooth crown

root       shell
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• Example: Assembling the red-framed segments produces the 
visualization on the right

Multilevel Segmentation Hierarchy

Next question → which segment should we subdivide?
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Information Guided Traversal

• Evaluating information content of the segments to 
provide some guidance 

• Segment entropy:

• where v
i
 is a voxel in V, p(v

i
) is the probability of v

i
.

• p(v
i
) can be computed by analyzing how many voxels 

have the same intensity as v
i
 in V.
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Information Guided Traversal

• Evaluating information content of the segments to 
provide some guidance 

• Segment entropy:

• High entropy  → Complex segment 

Example: the entropy of the tooth is higher than the volume box, suggesting the 
tooth is more complex, so tooth should be subdivided

(red is used to show which segment 
has a higher entropy)
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Information Guided Traversal

The segment entropies can be similar

Which segment should we divide next?
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Information Guided Traversal

The segment entropies can be similar

Which segment should we divide next?

 - Use Information Gain
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Information Guided Traversal

• Evaluating the information gain of a subdivision

• The information gain is defined as the entropy reduction of a subdivision

• Subdivisions with high information gain suggest separations of  
structures.
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Information Guided Traversal

• Example: Splitting the segment with high information gain separates the 
surfaces of the tooth crown and dentine

( blue to represent the information gain 
)
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Interactive Exploration

User selectively select the histogram to expand the segments 
and interactively compose visualizations
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Interactive Exploration

User selectively select the histogram to expand the segments 
and interactively compose visualizations

[ Courtesy: Cheuk et al. 
VisWeek 2012 ]
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Results
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Results

68



Conclusion

• In this paper idea of using computational visual segmentation is 
used to effectively mimic user interaction

• It classifies intuitive volumetric regions

• An exhaustive multilevel hierarchy is built from these segments

• Information content is provided to guide the hierarchy traversal

• Users can interactively explore and visualize with these ingredients
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Future Work

• Improve the information content measures

• Segment histograms with different attributes
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Thank you all
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